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The energy fraction D
avg

is developed as a measure of energy con"nement in periodic
systems of "nite extent. Based on the response of a system to uniform broadband forcing,
D
avg

is experimentally measurable but can be expensive to calculate. It is shown that a norm
of the eigenvector matrix D@

avg
is a good approximation for D

avg
when damping is light. D@

avg
is

almost three orders of magnitude faster to calculate than D
avg

, which makes detailed Monte
Carlo studies of imperfections practical. One-dimensional linear-chain and cyclic systems
of a range of sizes are studied. In line with previous research, it is found that a periodic
system's propensity to con"ne energy increases with system size. It is also found that cyclic
systems are less likely to su!er energy con"nement than (otherwise equivalent) linear-chain
systems.

( 2000 Academic Press
1. INTRODUCTION

Many structures are composed of nominally identical substructures arranged in a linear
chain or in a cyclic chain. Examples of such structures are: skin-stringer assemblies used in
aircraft fuselages, multi-bay truss structures like the proposed international space station,
and turbine blade assemblies. It is common to model such structures as perfectly periodic
systems composed of identical subsystems because such models lead to straightforward
predictions of vibration behaviour. However, even small imperfections can cause such
predictions to be qualitatively incorrect. This paper is concerned with the vibration of
imperfect periodic systems of "nite extent, and speci"cally with quantifying their propensity
to con"ne energy rather than allowing it to spread throughout the system. This behaviour is
usually known as localization, a carryover from solid-state physics where it was "rst
predicted for electrical conduction in disordered solids.

Localization theory was developed for in"nite systems but many engineering systems are
composed of too few subsystems for this to be a valid assumption, so straightforward
application of results from solid-state physics to structural dynamic problems is often not
possible. Nevertheless, energy con"nement in "nite systems has been predicted and
experimentally observed.

In structural dynamics, many researchers have conducted deterministic analyses of the
free vibration modes of disordered one-dimensional structures [1}6]. Others have
conducted statistical analyses by studying the forced response of linear-chain systems to
single frequency excitation applied to a single subsystem. This is justi"ed by the argument of
Matsuda and Ishii [7] that at a given frequency the localized mode shapes feature the same
(exponential) spatial decay as the forced response. Since localization leads to exponential
decay of the vibration modes, it is usually quanti"ed in terms of the localization factor c,
022-460X/00/190669#26 $35.00/0 ( 2000 Academic Press
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which is de"ned such that (on average) the mode shapes or vibration amplitudes (in the case
of forced response) decay by e~cN over N subsystems.

In the past decade, a useful distinction has developed between strong localization and
weak localization. In general terms, strong localization occurs when subsystem disorder is
high relative to coupling between subsystems. In real structures, unintentional disorder
rarely exceeds 3}4%, so strong localization is usually associated with weak coupling. If the
coupling is strong, only weak localization can occur. This happens if the ratio of disorder to
coupling strength is low but the system in question is very large so that localization e!ects
are inevitable. It is this latter category that is most akin to the phenomenon as it arises in
solid-state physics, so it is not surprising that much of localization theory in the structural
dynamics context is couched in language appropriate for the study of weak localization in
in"nite systems. In particular, travelling wave analyses are often applied which neglect the
e!ect of boundary conditions (see, e.g., reference [8]).

Pierre [9] showed that weak localization is not of practical concern in many engineering
structures. He gave an example of a weakly localized system in which 555 sites (subsystems)
were needed for the vibration amplitude to decay by a factor of two. Not only would an
engineering structure comprised of these many substructures be uncommon, it is likely that
damping e!ects would be much more signi"cant in causing decay of vibration, making
weak localization e!ects imperceptible. Bouzit and Pierre [10] also found that the accuracy
of a travelling wave approach deteriorates for large c, in spite of the fact that for large
c boundary e!ects would diminish in signi"cance. While they were unable to give an
explanation for this, it was a consistent observation in their simulations. They concluded
that a travelling wave analysis does not handle strong localization well, and that a modal
approach should be used instead.

For "nite systems signi"cant localization must manifest itself within the length of the
system, so any localization in "nite systems must fall into the &&strong'' regime. In particular,
the e!ect must be observable in the normal modes of the system, hence the term &&normal-
mode localization'' implies strong localization. Furthermore, c is not an ideal measure of
localization in "nite systems because of re#ections from the boundaries. In light of this,
several measures have arisen to quantify localization in "nite systems. These range in
sophistication from ad hoc comparisons of amplitude ratios of individual modes [2, 11] to
norms of the eigenvector matrix [6, 12, 13]. None of these, however, has gained widespread
use, and c is still the dominant measure of localization even for "nite systems.

The energy fraction developed in this paper is a direct measure of energy con"nement in
"nite systems, which can be measured experimentally, as well as, predicted theoretically. For
light damping, it is shown that the energy fraction can be approximated as a norm of the
eigenvector matrix, making it an economic measure of localization in "nite systems. The
theory presented in this paper is developed for single-degree-of-freedom systems. However,
this is not a practical limitation. Structures that are prone to localization generally have
spectral "ltering behaviour featuring distinct pass-bands and stop-bands. Each pass-band
corresponds to one type of subsystem motion, that is, one degree of freedom in multi-degree-
of-freedom systems. In e!ect, each degree of freedom can be modelled as a separate system.

The energy fraction was used successfully to predict localization behaviour in a 12-rib
wrap-rib structure [14]. The experimental results of that study will be the subject of
a subsequent paper.

1.1. MODE LOCALIZATION VERSUS ENERGY CONFINEMENT

There are two practical reasons to be concerned with localization phenomena. The "rst
has to do with distortion of the normal modes. This is relevant in control of structural
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dynamics (for example) where the presence of localized modes can invalidate control
schemes that are based on the extended modes of a perfect structure. This is particularly
important for future large space structures [3, 4, 15, 16]. In such applications it is necessary
to calculate the normal modes of a disordered structure during the design phase, and assess
whether localization is likely to be signi"cant (indeed, it may be desirable). The complexity
and considerable expense of predicting responses (in numerical simulation) can be avoided.

On the other hand, many engineering applications are concerned with the con"nement of
(vibration) energy in the proximity of where it is input; thus, localization is also a &&response
phenomenon''. In this sense, localization occurs when extended disorder in a nominally
periodic system causes all the normal modes to be con"ned to local regions. It is not enough
for some modes to be localized, since signi"cant energy transport can still occur through the
remaining extended modes (a fact observed by Friedmann et al. [13]). Direct measures of
energy con"nement should therefore be based on the response of a system (sum of the
modal responses) to a speci"c excitation. Frequency response functions are an obvious way
to compare perfect and imperfect systems since their construction entails a modal sum.
However, such calculations are computationally expensive to the extent that even with
modern engineering workstations, detailed Monte Carlo studies of large systems may still
be prohibitive.

As an alternative, Pierre [9] (after reference [17, 21]) derived an exact expression for c (u)
in "nite systems to single frequency forcing applied to one end of a linear chain. The
solution does not require the response to be calculated; indeed, only the natural frequencies
of the disordered system need to be found. However, it does not hold if the forcing frequency
u is a natural frequency of the system and, in any case, it is only applicable to linear-chain
systems. The measure of energy con"nement proposed in this paper is applicable to all types
to systems: cyclic as well as linear chain, and also to systems of higher dimensionality.

1.2. ENERGY CONFINEMENT DUE TO DAMPING

As well as being a response phenomenon, energy con"nement in disordered periodic
systems is also a &&resonance phenomenon''. Since most of the energy #ow in a periodic
structure occurs in its pass-bands (indeed, energy cannot propagate long distances outside
of the pass-bands), it is the degradation of energy transport within the pass-band of the
ordered system that accounts for the largest di!erence in behaviour between ordered and
disordered systems. This implies that damping is important in determining system
behaviour. From the "rst, Hodges [22] stated that damping can overwhelm localization
e!ects. In large systems (as in solid-state physics) it is natural to talk of a &&localization
length-scale'', which is roughly the length of the region over which the amplitude of
a localized mode is large [23}25]. Pierre [9] uses the reciprocal of the localization factor
c~1 as a measure of this localization length. If dissipation due to damping signi"cantly
attenuates vibration before this length is reached, it can be said that damping has
overwhelmed the localization e!ect.

In "nite systems, the level of damping necessary to overwhelm localization e!ects is that
which would make a system non-reverberant (in reverberant systems propagating waves are
re#ected many times by the boundaries before being dissipated). For one-dimensional
systems, the degree of modal overlap directly determines whether a system is reverberant or
not [23]. Damping will dominate localization e!ects if the modal half-power bandwidth is
signi"cant compared to the frequency separation of the modes [20]*that is, when it is not
possible to distinguish the individual modes in a pass-band. In structural dynamics,
however, highly reverberant systems are often encounted. In such systems, damping is of
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secondary importance, and perhaps for this reason most studies of localization
phenomenon have not considered damping e!ects systematically.

Of the studies that have considered damping e!ects (among them references [13, 18, 26,
27], only two have compared energy con"nement due to damping and that due to disorder
over a su$ciently broad range of parameters to have arrived at general conclusions.
Castanier and Pierre [28] and then Langley [29] found that the conditions that favour
strong localization due to disorder also led to high spatial decay (con"nement of vibration)
due to damping. Langley, in particular, showed that the exponential decay rate due to
damping is approximately inversely proportional to the pass-band width. That is, narrower
pass-bands (which are consequence of weaker coupling) lead to greater energy con"nement
due to damping. This is true also of energy con"nement due to disorder. For fairly modest
levels of damping, Langley found that energy con"nement due to damping was comparable
in magnitude to that due to disorder. Castanier and Pierre [28] concluded that with strong
coupling, damping e!ects dominate.

1.3. ENERGY CONFINEMENT IN TERMS OF ENERGY FRACTION

The prevailing measure of localization c is a measure of spatial decay in the modes, and
also of the spatial response distribution of imperfect systems to forcing at a single frequency.
The view of imperfect periodic systems developed here focuses on the response to broadband
forcing, which Hodges and Woodhouse [19] found to di!er signi"cantly from the response
to single frequency forcing. In their simulations of broadband forcing they found that the
decay away from the excited subsystem was not accurately exponential and the decay rate
with distance was substantially less than that of the single frequency response. This might be
expected since broadband forcing would result in excitation of more modes than single
frequency forcing, thereby generating more &paths' for energy transport.

There are few studies that have considered the response to broadband forcing
[19, 20, 29], yet it is undeniable that such forcing is of practical importance. Since the e!ect
of imperfections is greatest with narrow pass-bands, it is likely that a realistic force spectrum
will have signi"cant magnitude across a system's pass-band(s). In any case, this would
certainly be true for shock loadings or if a system was subjected to random noise. Indeed, it
seems reasonable that in applications where energy con"nement is an issue, broadband
forcing is more relevant than forcing at a single frequency.

The aspect of system behaviour that is studied here is spatial energy con"nement.
In particular, for a periodic system subjected to broadband forcing on one of its subsystems,
it is desired to "nd the fraction of the total input energy that remains in the excited
subsystem as a function of the overall imperfection in the system. This is a direct measure of
energy isolation. Clearly, this quantity can be calculated from the response of all the
subsystems to the applied force, and this is how the energy fraction is de"ned. For light
damping (f@1), it is shown that an excellent approximation for the energy fraction can
be obtained directly as a norm of the eigenvector matrix. Indeed, this norm is the exact
solution for zero damping and represents the energy con"nement due solely to
imperfections.

Subsequent to the development of the theory, one-dimensional linear chain and
cyclic systems are investigated in detail. A comparison is made between the energy
con"nement behaviour of these two types of systems, with particular attention paid to the
e!ect of system size. It is commonly known that larger systems are more susceptible to
localization, but, to the best of the author's knowledge, this e!ect has not been extensively
studied.
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2. ENERGY FRACTION AS A MEASURE OF LOCALIZATION

Many studies of localization in linear-chain systems (see, e.g., references [9, 10, 19]) have
examined localization e!ects directly by exciting one end of a "nite linear chain and
calculating or measuring the response of the subsystems away from the excitation. The
localization factor c is then calculated from an ensemble average of the logarithm of the
responses over many con"gurations of the system in question. This approach is obvious for
a linear-chain system, but is not suitable for a cyclic system which does not possess ends. If
this technique is modi"ed by measuring the responses due to exciting every subsystem and
averaging the results, the outcomes is a measure that has the advantage that it could be
applied equally to linear-chain and cyclic systems, and indeed, to systems of higher
dimensionality. At "rst sight, this measure seems to be N times more expensive to calculate,
but it should be noted that this one measure contains as much statistical information as
N con"gurations where only the end subsystem is excited. Such a measure is developed here
and the remainder of this section is concerned with "nding an economical method for
calculating it.

Consider a system composed of N coupled single degree of freedom (d.o.f.) oscillators
(subsystems) with light damping, such that the system is reverberant. Assuming that the
eigenstructure for a particular con"guration of imperfections is available, the response of
the jth subsystem >

ij
to sinusoidal input X

i
e*ut on the ith subsystem at a frequency u is

given by the usual formula [31]
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where the frequency range u
a

to u
b

encompasses all the u
k
. The potential energy in the

pass-band is proportional to E
ij
, and it is assumed that the scaling factor is the same for all

subsystems (i.e., the subsystems are nominally identical). As we are concerned with energy
ratios, no generality is lost by using a scaling factor of &&1''.

The total energy in the system is the sum of the energies in all of the subsystems:t

E
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"

N
+
j/1

E
ij
. (3)

The energy fraction D
i
is de"ned as the ratio of the energy that remains in the excited (ith)

subsystem to the total energy in the system,

D
i
"

E
ii

E
tot

. (4)
sSee Hodges and Woodhouse [19, 30] for a discussion on averaging in c calculations.
tThe energy in the coupling elements, which in practice may not be small, is nonetheless ignored.
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Note, if S
xi
(u) is uniform across u

a
)u)u

b
, it cancels out of the numerator and the

denominator of equation (4), so that D
i
is independent of the magnitude of the forcing.

However, the forcing must not be so great that the system no longer behaves linearly.
Repeating this calculation for all the subsystems (over index i) and taking the average gives
the required result,

D
avg

"

1

N

N
+
i/1

D
i
. (5)

The greater D
avg

, the greater the degree of energy localization. For example, if D
avg

"1
2

then
(on average) half the energy input to a subsystem remains in that subsystem while the other
half is distributed among the remaining N!1 subsystems. For comparison, if D

avg
"3

4
,

three-quarters of the input energy remains in the excited subsystem, indicating a greater
degree of energy localization.

There are various ways to calculate or measure energy other than the de"nition used
here. Each method will yield slightly di!erent values of D

avg
. However, since D

avg
is a ratio, it

is fairly robust and as long as the discrepancies between the energy calculation or
measurement methods are consistent, the results should be very similar. Thus, the de"nition
of D

avg
can be relaxed to admit other measures of energy. For example, mobility (velocity)

could be used as the frequency response function (equation (1)) rather than the receptance
(displacement), or hysteretic damping could be assumed rather than viscous damping.
Indeed, there are other ways to calculate energy altogether. For instance, Langley presented
an e$cient travelling wave analysis of average subsystem kinetic energy in reference [29]. In
experimental studies, subsystem energy could be calculated in the time domain (by
integrating over many cycles) or in the frequency domain, by summing the (squared)
response spectrum over the pass-band of the system. The latter method was used in an
experimental study of a radial, string-beam structure [14]. Attention is turned now to
a direct measure of energy fraction that does not require calculation of the response at all.

3. CALCULATING D
avg

FROM THE EIGENVECTORS

Calculating D
avg

from equations (1)}(5) is computationally expensive, especially if
a Monte Carlo study must be performed. In this section an expedient method of
approximating D

avg
directly from the eigenvectors is derived. The approximation depends

on a few assumptions, which are described in context, but these assumptions are not too
restrictive and the conditions under which they fail are investigated subsequently.

The pivotal requirement in the derivation is that the eigenvector matrix be orthogonal
so that the sum of the squared elements of each of the columns and each of the rows is equal
to 1. This requires the eigenvectors to be length normalized. To accommodate this scaling it
is necessary to assume that the subsystems are nominally identical; this assumption poses
no di$culty since it is fundamental to the de"nition of a periodic system.

For clarity of notation, the derivation is presented for a system of size N"3 but the
results are generally applicable. To begin, it is assumed that the eigenvectors of the system
are the columns of the following matrix:
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where the rows of U correspond to the system co-ordinates, one per subsystem. It is also
assumed that the corresponding eigenvalues are u

1
, u

2
, and u

3
.

The response of the system to a sinusoidal excitation applied to the "rst subsystem is
(from equation (1))
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From equation (2) the energy in the "rst subsystem when subjected to uniform broadband
excitation S
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. To simplify
equation (12) two assumptions are made. First, it is assumed that the modal responses do
not overlap signi"cantly in frequency. That is, in the frequency range where f
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integrated modal responses are dominated by the responses close to the resonance
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assumptions the energy in each of the subsystems is given by

E
11
"(/2

11
/2
11
#/2

21
/2
21
#/2

31
/2

31
)F2S

r
, (14)

E
12
"(/2

11
/2
12
#/2

21
/2
22
#/2

31
/2

32
)F2S

r
, (15)

E
13
"(/2

11
/2
13
#/2

21
/2
23
#/2

31
/2

33
)F2S

r
. (16)



676 D. YAP AND D. CEBON
Then, from equation (4) the resulting energy fraction is
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When equations (14)}(16) are substituted into equation (17), F2S
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cancels out leaving an

expression solely in terms of elements of the eigenvectors. Performing the substitution and
rearranging terms gives
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Due to orthogonality of U each of the terms in parantheses in equation (18) is equal to 1 so
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Again from orthogonality the denominator of equation (19) is also equal to 1 and the "nal
result is
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Similar analyses for uniform broadband forcing applied to the second and third subsystems
give
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Referring to equations (5) and (6) it is evident that D
avg

can be calculated by raising all of the
components of the eigenvector matrix U to the fourth power, summing the columns of the
resultant matrix, and averaging these sums. Thus, under the assumptions previously stated,
the energy fraction can be calculated as a norm of the length normalized eigenvector matrix,
which is henceforth de"ned as
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Clearly, D@
avg

can be calculated for systems of any size N.
In the derivation of D@

avg
no assumptions were made regarding the nature of the physical

system apart from it being nominally periodic, having light damping (f
k
@1, the same in all

modes), and without signi"cant modal overlap. Consequently, D@
avg

is applicable to any
system composed of coupled single-d.o.f. oscillators, whether the system is one-dimensional
or even two- or three-dimensional. Furthermore, imperfections are allowed from any
source; they may rise in the coupling (&&o!-diagonal'' imperfection), and also in the
subsystems' sti!nesses and masses (&&diagonal'' imperfection). However, in this paper
thorough investigation of D@

avg
is focused on one-dimensional, cyclic and linear-chain

systems with nearest-neighbour coupling, and diagonal imperfections.
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4. COMPARISON OF D
avg

AND D@
avg

D@
avg

is a measure of energy con"nement due to imperfection in lightly damped systems.
By comparison, D

avg
is a measure of energy con"nement due to imperfection and damping.

In order to ascertain when the two measures are practically equivalent a parameter study of
2 d.o.f. systems is presented. This type of system is unique because all imperfections can be
represented by a single parameter, which is simply the dissimilarity (in sti!nesses, say)
between the two subsystems. By contrast, modelling larger systems requires the results to be
averaged over an ensemble of imperfection con"gurations, necessitating an examination of
the nature of these averages. This additional complexity is deferred until section 5.

It is straightforward to show that the eigenvalue problem associated with the 2 d.o.f.
system shown in Figure 1 is [14]

[A]U"jU, (24)

where

j"
m

k
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u2, (25)

[A]"C
D
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D#eD, (26)

with D"2#o, o"k
d
/k

c
and e"i/k

c
. The parameter values used were m"1 kg and

k
c
"0)1 N/m. The subsystem sti!ness k

d
and the dissimilarity between the two subsystems

i were allowed to take values appropriate to achieve three di!erent coupling ratios (o"10,
100, 1000) and a broad range of imperfection ratios (10~2)e)104) respectively.

For each set of parameters the eigenvalue problem was solved and D@
avg

was calculated
using equation (23). For D

avg
, which depends on damping as well as the eigenstructure, the

damping ratio was introduced as an additional parameter; D
avg

was calculated a for
10~5)f)10~1.

4.1. RESULTS FOR 2 d.o.f. LINEAR-CHAIN SYSTEMS

The results of the parameter study are presented in three stages to show (1) the general
behaviour of D

avg
as the imperfection ratio is increased; (2) how damping increases energy

con"nement to the point that D@
avg

cannot be taken as equivalent to D
avg

; and "nally (3) how
the coupling ratio o in#uences the e!ect of damping by controlling the modal frequency
spacing. To begin, consider the two graphs in Figure 2 where D

avg
is plotted with D@

avg
for

o"100 and the range of e previously noted. The top graph, Figure 2(a), shows the results
Figure 1. Two coupled oscillators.



Figure 2. Variation of D
avg

and D@
avg

with imperfection for two damping ratios: (a) o"100, f"0)0001;
(b) o"100, f"0)002. NB: D

avg
and D@

avg
overlap in (a).
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for f"0)0001 where it is evident that D
avg

and D@
avg

are identical. The general behaviour of
the 2 d.o.f. system is as follows: with low values of e the energy fraction is 1

2
indicating equal

energy in the two subsystems. Not until e"0)1 is there an appreciable increase in energy
fraction, and this value marks roughly the beginning of a transition region that spans three
orders of magnitude of e. Where e'100 near total energy con"nement is achieved. Thus,
the energy con"nement shown in Figure 2(a) is due solely to dissimilarity between the two
subsystems.

As discussed in Section 1, damping causes energy con"nement in periodic systems similar
to that due to imperfection. This is evident in Figure 2(b) where the damping ratio was
increased to f"0)002. Notice "rst that that D@

avg
is the same in both "gures since it is

independent of f. By comparison, D
avg

indicates a higher level of energy con"nement for low
values of e in Figure 2(b). This additional energy con"nement is due to damping. Notice that
the di!erence between D

avg
and D@

avg
decreases as e increases, which shows that the e!ect of

imperfections dominate with large dissimilarity.
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To illustrate the full relationship between energy con"nement due to imperfection and
that due to damping, D

avg
and D@

avg
are plotted in Figure 3 for the same range of e as in

Figures 2, over a broad range of damping, 10~5)f)10~1. Again, the D@
avg

curve is the
same for all values of f; the di!erence between D

avg
and D@

avg
is due solely to additional

energy con"nement caused by damping. The "rst notable observation is that if energy is
totally con"ned (D

avg
"D@

avg
"1) due to dissimilarity (where e'100) then damping cannot,

of course, increase energy con"nement further. For e(100, however, there is an increase in
energy fraction with increasing f that is similar to that due to increasing e. Clearly, for high
values of f, D@

avg
is no longer equivalent to D

avg
. However, for the given parameter range, D@

avg
is a lower bound on D

avg
. This is physically reasonable since damping should always

increase energy con"nement. The question that immediately arises is how much damping
causes signi"cant di!erences between D

avg
and D@

avg
?

In one-dimensional systems the level of modal overlap determines whether a system is
reverberant or not. If a system is non-reverberant, clearly there must be signi"cant energy
con"nement, so D

avg
will be greater than D@

avg
when f (which determines the bandwidth at

resonance) is large such that there is signi"cant modal overlap. However, modal overlap
Figure 3. Variation of D
avg

and D@
avg

with imperfection and damping ratio as parameters.



680 D. YAP AND D. CEBON
also depends on the modal frequency spacing, which depends on the coupling ratio o. In
particular, the pass-band width is inversely proportional to o [9, 29]. Larger values of o lead
to narrower pass-bands and hence to smaller frequency spacings and greater modal overlap
for a given f.

To see the correlation between energy con"nement and modal overlap, compare the
contour plot (Figure 4(a)) which shows the curve where (D

avg
!D@

avg
)"0)1 with the contour

plot (Figure 4(b)) which shows the curve where the half-power bandwidths of the two modes
overlap. These results are for o"100, similar curves for o"10 and 1000 were generated
and the full set of results are shown in Figure 5. The exact relationship between D

avg
and D@

avg
Figure 5. Energy fraction of modal overlap comparison for three coupling ratios (Figure 4 is a legend for this
"gure).

Figure 4. Energy fraction to modal overlap comparison for o"100: (a) contour plot of D
avg

!D@
avg

"0)1;
(b) contour plot of modal overlap. Dashed line indicates intersection of half-power bandwidths of the two modes.
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is not investigated further. However, Figure 5 con"rms that there is a strong relationship
between energy con"nement due to damping and the degree of modal overlap, which, in
turn, depends not only the damping ratio but also on the coupling ratio. In sum, when there
is signi"cant modal overlap, only D

avg
gives an accurate account of the energy con"nement

in a periodic system. However, in the 2 d.o.f. system, D@
avg

is a lower bound for D
avg

and the
di!erence between the two measures represents the energy con"nement due to damping.

5. THE EFFECT OF SYSTEM SIZE

In this section the energy con"nement behaviour of linear-chain systems is investigated as
function of system size. As a preliminary step the mathematical model for generic one-
dimensional systems is developed and the details of the calculations are presented. The
statistical pro"le of the results are checked to ensure that they represent the behaviour of
typical systems. The results show a de"nite size dependence: all other factors being equal,
larger systems exhibit a greater propensity for energy con"nement.

5.1. SIMULATIONS OF GENERIC SYSTEMS

In order to study systems larger than the 2 d.o.f. system considered so far it is necessary to
perform numerical simulations. In particular, D

avg
and D@

avg
are calculated for generic

systems of size N with diagonal imperfections in the (N]N) system matrices. The
mathematical model of the 2 d.o.f. system can be extended by adapting [A] (equation (26))
for larger systems; hereafter referred to as [A

C,N
] for cyclic systems or [A

L,N
] for linear-

chain systems. For example, the system matrix for the 12 d.o.f. cyclic system is expressed as

[A
C,12

]"

D#m
1

!1 0 2 0 !1

!1 D#m
2

!1 0 0

0 !1 } F

F 0

0 } !1

!1 0 2 0 !1 D#m
12

. (27)

This matrix represents all one-dimensional 12 d.o.f. cyclic systems with nearest-neighbour
coupling. The only di!erence between [A

L,12
] and [A

C,12
] is the exclusion of the two

anti-diagonal coupling terms (by replacing !1 with 0) at (1, 12) and (12, 1).
In this model, the diagonal imperfections m

i
are given by

m
i
"Bt

i
, i"1, 2,2, 12, (28)

where t
i
are random numbers uniformly distributed between 0 and 1, and the maximum

imperfection ratio is

B"
i
max
k
c

. (29)

i
max

is the maximum imperfection sti!ness, and k
c
is the coupling sti!ness. The remaining

variable in equation (27) is D"2#o, where o"k
d
/k

c
is the ratio of the subsystems sti!ness

to the coupling sti!ness.
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To see when B is the governing parameter for energy con"nement due to imperfection,
note that changing k

d
simply shifts the mean diagonal value of the system matrix. A well-

known result from linear algebra (see, e.g., Joshi [32]) states that two matrices have the
same eigenvectors if they commute. Thus, to prove that changing k

d
does not a!ect the

eigenvectors it is su$cient to show

[A] ([A]#s[I])"([A]#s[I]) [A], (30)

where [A] is any matrix, [I] is a compatible identity matrix, and s is an arbitrary scalar.
Carrying out the multiplications in equation (30) gives

[A]2#[A]s[I]"[A]2#s[I][A], (31)

the two [A]2 terms in equation (31) cancel out, as does the scalar s, leaving the obvious
result that [A][I]"[A][I]"[A]. Therefore, since D@

avg
is based solely on the eigenvectors

it is una!ected by k
d
. However, D

avg
does depend on k

d
since it directly a!ects the coupling

ratio o which interacts with damping to produce energy con"nement e!ects as described in
the study of the 2 d.o.f. system.

5.2. DETAILS OF THE CALCULATIONS

Monte Carlo simulations were performed by averaging D
avg

and D@
avg

over many random
con"gurations of [A

C,N
] and [A

L,N
] with N"3, 6, 12, 24, 48, o~1"0)1, and f"0)001. The

calculations were repeated over a wide range of imperfection to coupling ratios
(10~1(B(104) so that the entire transition from fully periodic to fully localized
behaviour was included. The number of random con"gurations p that make up the averages
varied from p"348 for N"3 to p"24 for N"48. In each case, the product
(N]p)"1152, a number that was chosen primarily because of limitations in computer
resources, but which also provided su$ciently smooth results that larger sample sets were
not required.

The decision to use smaller sample sets as N increased was justi"ed because the variances
of D

avg
and D@

avg
both decrease as N increases. This behaviour is also true for the localization

factor c, as shown by Langley [33]. Whilst the energy fraction D
avg

is not directly related to
the localization factor c, they both describe the same underlying phenomenon and it is
reasonable that both measures should display similar statistical properties.

The major computational expense in the simulations resulted from the calculation of
D
avg

. Whereas, D@
avg

required few additional computations beyond the calculation of
a system's eigenvectors, the response functions that make up D

avg
were very expensive to

calculate. In practice, D
avg

required approximately 800 times more #oating-point operations
to calculate than D@

avg
. On a Sun Sparcstation 10, which can perform over 9 million

#oating-point operations per second, it took over a week to calculate D
avg

for 24 random
con"gurations of N"48, but less than 15 min to calculate D@

avg
for the same con"gurations!

The calculations for N"48 were the most expensive. Even though the number of random
con"gurations was halved as system size was doubled, the time taken to complete the
calculations increased by a factor between three and four times with each doubling of N.
This signi"cant saving in computational time was part of the impetus behind the
development of D@

avg
.

In the following sections results for the linear-chain systems are presented as a basis for
general discussion of the behaviour of D

avg
and D@

avg
. The statistical pro"les of the two

measures are investigated to ensure that they predict the behaviour of typical systems
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(rather than being unduly in#uenced by a few anomalous con"gurations). The subsequent
introduction of comparable results for cyclic systems in section 6 then shows a signi"cant
di!erence between the energy con"nement behaviour of the two types of systems. This
di!erence is explained by examining the modes shapes of particular random con"gurations
in section 7 which show how D

avg
and D@

avg
re#ect dramatic changes in the systems'

eigenstructures as the imperfection to coupling ratio increases.

5.3. STATISTICAL PROFILE OF D
avg

AND D@
avg

In this section, typical ensembles from the Monte Carlo study are investigated in detail.
In particular, it is necessary to con"rm that the averages are a good indicator of typical
system behaviour. As a "rst example, D@

avg
was calculated for 256 random con"gurations of

a 12 d.o.f. linear-chain system as the coupling k
c
was decreased (B increasing). For this case,

all the D@
avg

values were retained*not just the averages. The results are shown as a shaded
histogram in Figure 6, where darker shading indicates greater frequency of occurrence. Also
plotted in Figure 6 are the mean value (solid line) and one standard deviation p on either
side of the mean (the two dashed lines bounding the mean). Cross-sections of Figure 6 for
B"1, 10, 100 are shown in Figure 7. These "gures show that for B(100, D@

avg
is evenly

distributed on either side of the mean value as typi"ed by the results for B"10 shown in
Figure 7. However, for B'100 the statistical pro"le features most of the D@

avg
values

clustered close to 1 with fewer con"gurations giving quite low values of D@
avg

. This is most
apparent in Figure 6. In sum, D@

avg
is a good indicator of typical system behaviour for

B(100, but for B'100 most con"gurations give values of D@
avg

that are closer to 1.
The average values of D

avg
and D@

avg
, and the standard deviations p of the two measures

were also calculated in the Monte Carlo simulations for N"3, 12, 48 (Figures 8(a)}(f )). It is
Figure 6. Shaded histogram of D@
avg

for N"12 taken over an ensemble of 256 random imperfection
con"gurations. The mean and standard deviation$p are also shown.



Figure 7. Cross-sections of the shaded histogram in Figure 6 for B"1, 10, 100. The mean values and p are also
shown as solid and dashed lines respectively.
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evident that D
avg

and D@
avg

have very similar statistical pro"les. This is expected since
damping is not a major factor for the given parameter settings. Notice that D@

avg
#p (and

D
avg

#p) rises above 1 for certain regions of B. This is not because there were values of D
avg

and D@
avg

that were greater than 1*clearly this is impossible. Rather, this is due to the
skewed distributions of D@

avg
(and D

avg
) as they approach 1, as noted above.

All three systems share common characteristics: there is no signi"cant variation of D
avg

or
D@
avg

from the mean for B(1 or for B'103, which corresponds to the two limiting cases of
periodic behaviour and completely localized behaviour respectively. In the transition region
there is a gradual increase in p as B increases from 1 until a peak is reached around B"10,
whereafter p decreases to zero for BA103.

As noted in the previous discussion, the variance decreases with N, which justi"es fewer
members in the ensembles used to calculate the averages of larger systems. Scrutiny of the
p results showed that the standard deviation is roughly proportional to 1/JN for
intermediate values of B. By contrast, the variance of the localization factor c varies with

1/JN [33].

5.4. RESULTS FOR LINEAR-CHAIN SYSTEMS

The results for the linear-chain systems are presented in Figure 9, which shows the Monte
Carlo averages of D

avg
and D@

avg
over the range of B and N previously mentioned with

f"0)001. In general, it is apparent that D
avg

and D@
avg

are very similar over the parameter
range shown. At B"0)1 both measures start o! at an energy fraction somewhat greater
than 1/N. In the case of the 2 d.o.f. system, the energy fraction started out as 1

2
with B"0)1,

indicating equal energy in the two subsystems. However, there is no reason to expect that
the energy fraction should always have a value equal to 1/N at low values ofB, and this does
not always occur. Thus, even ordered systems do not distribute uniform broadband energy



Figure 8. Mean and standard deviation of D
avg

and D@
avg

for linear-chain systems with N"3, 12, 48: (a) D
avg

,
N"48; (b) D@

avg
, N"48; (c) D

avg
, N"12; (d) D@

avg
, N"12; (e) D

avg
, N"3; (f ) D@

avg
, N"3.
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equally among all their constituent subsystems. However, imperfection always increases
energy con"nement, and as B increases, D

avg
and D@

avg
increase smoothly to 1, which

corresponds to complete energy con"nement.
For N"3, 6, 12 the two measures are practically identical for engineering purposes.

However, for N"24, D
avg

predicts a higher level of energy con"nement than D@
avg

at low
values of B, and this discrepancy is more pronounced for N"48. As for the 2 d.o.f. system,



Figure 9. D
avg

and D@
avg

for linear-chain systems. o~1"0)1, f"0)001, N"3, 6, 12, 24, 48.** D
avg

; } )} )} D@
avg

.
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energy con"nement due to damping (f"0)001) accounts for the di!erences between the two
measures.

The pass-band width is determined by the coupling ratio o [14, 29]. Since o is the same
for the "ve systems under consideration they all have the same pass-band width. In
this situation, the modal density (the number of modes per unit frequency) is proportional
to N and the modes of the larger systems are therefore closer together in frequency.
Furthermore, since the damping ratio f is the same for all "ve systems, the larger
systems feature greater modal overlap and hence greater energy con"nement due to
damping.

A striking feature of these results is the dependence on system size. For large values of
N (larger than those shown in Figure 9) there would not be signi"cant di!erence in the
behaviour of a system of size N"m and one of size N"2m. This supports the use of the
asymptotic localization factor c for charaterizing the behaviour of large systems. However,
Pierre [9] notes that c should not be used unless N is greater than the &localization
length-scale', c~1. If this condition is not met, boundary conditions in#uence the amplitude
decay as much as, and perhaps more than, the disorder. Thus, smaller systems are a!ected
more by boundary conditions and are consequently more reverberant. This is evident for
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systems of the sizes shown, where the transition to localized behaviour is dependent on N.
For example, when B"1 (shown as a dotted line in Figure 9), D@

avg
for N"3 is just

beginning to increase from its value at B"0)1, while D@
avg

for N"48 has increased by 50%.
It is often recognized that larger systems are more likely to experience localization: D@

avg
provides a quantitative assessment of this e!ect.

A closer view of the dependence on system size is obtained by considering the quantity,

K"D@
avg

!D@
avg

DB/0
. (32)

This is the increase in the total (absolute) energy fraction that remains in an excited
subsystem due to imperfection above that of the perfect system of the same size. The level of
imperfection B necessary to achieve a prescribed K was calculated as a function of N for
K"1, 50, 10, 20% (percentage of the total energy fraction, i.e., 1) and N"4, 18, 12,2 , 64.
For each N, a least-squares "t for B was conducted by calculating D@

avg
(by the Monte Carlo

method previously described) at each of the trial values of B. The quantity that was
minimized was the squared di!erence between the prescribed K and that calculated from
equation (32). The results of the calculations are shown in Figure 10.

The obvious observation from Figure 10 is that for a given N, greater imperfection B is
necessary to achieve larger values of K. Of greater interest, however, is that each of the four
curves in Figure 10 shows a decrease in B needed to achieve a given K with increasing
system size N. Whilst larger systems are known to be more susceptible to mode localization,
this result con"rms that they are also more prone to con"ne broadband energy. Comparing
the curve for K"20% to that for K"1% shows that the drop in B with increasing N is
more pronounced as K increases. This unexpected result shows that smaller systems require
increasingly greater relative imperfection to achieve the same increase in energy fraction as
compared to larger systems.
Figure 10. Size dependence: each curve represents the imperfection ratio necessary to increase total energy
con"nement by K.
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6. COMPARISON WITH CYCLIC SYSTEMS

The calculations for the linear-chain systems were repeated for their respective cyclic
counterparts. All the parameters were the same including the ensembles of imperfection
distributions; the only change was the substitution of [A

C,N
] for [A

L,N
]. Results for the

cyclic systems are shown in Figure 11.
Unlike linear-chain systems there are signi"cant di!erences between D

avg
and D@

avg
for

cyclic systems at low values of imperfection B, especially for small N. This is most evident
for N"3, 6, 12 where D

avg
decreases slightly with increasing imperfection, reaching

a minimum at B&1, and thereafter rising together with D@
avg

. The cause of this behaviour
can be traced to the degeneracy of the eigenstructure of perfect cyclic systems. It is well
known that all modes except the "rst mode (and the last mode when N is even) of cyclic
systems occur in orthgonal pairs. The modes of each pair have the same natural frequency.
When imperfections are introduced into a cyclic system these mode pairs split and each of
the modes have a unique natural frequency. However, with small imperfection ratios these
natural frequencies are still close in frequency, gradually splitting further apart as the
imperfection ratio increases. It was shown in section 4.1 that greater modal overlap leads to
greater energy con"nement due to damping. What is apparent for N"3, 6, 12 is that energy
Figure 11. D
avg

and D@
avg

for cyclic systems, o~1"0)1, f"0)001, N"3, 6, 12, 21, 48. ** D
avg

; } )} )} D@
avg

.
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con"nement due to damping decreases as B increases because the modal overlap decreases.
This is con"rmed by noting the absence of dips in D@

avg
, which does not account for energy

con"nement due to damping.
For N"24 the dip in D

avg
is less noticeable, and it is imperceptible for N"48; indeed,

D
avg

for N"48 is indistinguishable, in the main, from its linear-chain counterpart in Figure
11. In part, this insensitivity of larger cyclic systems is due to the increase in modal density
with N, which leads to signi"cant modal overlap (and, consequently, energy con"nement
due to damping) even for perfect systems. Thus, the e!ects of small imperfections will be
hidden partly by the higher mean level of modal overlap. Another aspect of the size
dependence is explained by considering the result from section 5.4 that larger systems are
more susceptible to con"ning energy (due to imperfections) than smaller systems. Thus, the
modes of larger systems are more prone to localize, which means the mode pairs in cyclic
systems are more likely to separate as the system size increases. This would diminish energy
con"nement due to damping and explains the decrease of the dip as N increases from
3 to 48.

To investigate the e!ect of system size on the energy con"nement due to imperfections,
K (equation (32)) was calculated for cyclic systems over the same parameter range as was
used for linear-chain systems shown in Figure 10. The results of these calculations are
shown in Figure 12, as are, for comparison, the corresponding results for linear-chain
systems. As in the case of linear-chain systems, the imperfection ratio needed to achieve
a prescribed K in cyclic systems decreases with increasing N. However, the most interesting
conclusion from Figure 12 is that cyclic systems are more robust than their linear-chain
counterparts. That is, the imperfection ratio must be higher in a cyclic system to achieve the
same increase in total energy con"nement, than in the corresponding linear-chain system.
This is most pronounced for small N, and while the e!ect diminishes with increasing N, it
remains notable even for the largest system in the parameter study (N"64). This is not
wholly unexpected and seems physically reasonable. However, to explain the underlying
mechanism that causes the relative robustness of cyclic systems it is necessary to investigate
the mode shapes: a task undertaken in the next section.

7. MODE SHAPES

In this section the mode shapes of a typical 12 d.o.f. system with both cyclic and
linear-chain geometry are investigated. The same imperfections were used in both models.
Although only one con"guration of imperfections is presented, several con"gurations were
considered and the conclusions presented here are generally valid.

Figure 13(a) shows the modulus of the "rst eigenvector of a cyclic 12 d.o.f. system with
a particular imperfection distribution as B increases (i.e., the coupling strength decreases).
The data are presented in &&plan view'' where darker shading indicates greater magnitudes
(modal amplitude). It has been shown that the energy fraction rises with increasing B. To
show this, the corresponding D

avg
curves for the system are overlayed on top of the shaded

mode shape.
With small imperfection ratio (B(1) the mode shape is still recognizable as the

(1, 1,2, 1) mode of the perfect system. As B increases, the mode shape sustains greater
distortion until a sudden transition occurs at B+7, whereafter the mode is essentially
localized around a single subsystem. For large B each of the subsystems is essentially
autonomous and the dominant subsystem in each mode follows from the order of the
natural frequencies of the uncoupled subsystems. The "rst mode localizes to the subsystem
with the lowest individual natural frequency, the second mode to the subsystem with the
next higher intrinsic natural frequency, and so forth.



Figure 12. Size dependence: comparison of increase in total energy con"nement K between cyclic and linear-
chain systems: (a) K"20%, (b) K"10%, (c) K"5%, (d) K"1%. ]]] cyclic; ### linear chain.
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The sudden transition in Figure 13(a) is marked by a sharp rise in D
avg

. Other local slope
discontinuities in the D

avg
curve corresponds to sudden transitions in other modes.

However, not all modes experience sudden transitions. Figure 13(b) shows the "rst mode of
the 12 d.o.f. linear-chain system with the same imperfection con"guration. Here the mode
shape undergoes a smoother transition from periodic behaviour to localized behaviour.

It was observed in preceding sections that appreciable energy con"nement due to
imperfection occurs only if B'1. Examination of the modes themselves shows that this is
because signi"cant mode distortion does not occur until B'1, a fact that, from Figure 13,
holds for both cyclic and linear-chain systems.



Figure 13. Shaded mode shapes with D
avg

superimposed: (a) cyclic, mode 1, 12 d.o.f. (b) linear-chain, mode 1, 12
d.o.f. system with identical imperfection distribution as cyclic system.
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In the preceding section, cyclic systems were shown to be more robust than their
linear-chain counterparts. To show why this is, shaded histograms of mode 7 of the cyclic
and linear-chain systems are shown in Figure 14. Comparing the cyclic mode shape (Figure
14(a)) to the linear-chain mode shape (Figure 14(b)) for B'10 it is apparent that mode 7 of
the cyclic system extends over more subsystems than mode 7 of the linear-chain system.



Figure 14. Same as Figure 13 but showing mode 7, which is at the centre of the pass-band. (a) cyclic, mode 7,
(b) linear chain, mode 7.
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Clearly, this is due to the two ends of the cyclic system being connected together, which
results in the decay of modal displacements in both directions away from the dominant
subsystem (subsystem 12) rather than in just one direction. For B(10, Figure 14(a) shows
that the cyclic mode shape is more regular and is less prone to distortion than its
linear-chain counterpart (Figure 14(b)). In particular, note that the cyclic mode shape
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remains similar to that of the perfect system until well into the region 1(B(10, whereas
the linear-chain modeshape su!ers signi"cant distortion beforeB"1. Combined, these two
observations lead to the conclusion that the modes of cyclic systems are more robust to
imperfections than the modes of linear-chain systems, and that is why the latter are more
prone to energy con"nement due to imperfections.

8. CONCLUSIONS

Energy con"nement in periodic systems has been quanti"ed in terms of the energy
fraction, which is based on the response of a system to uniform broadband forcing applied
to individual subsystems. The energy fraction D

avg
is formally de"ned with respect to the

subsystem responses, but for light damping D@
avg

(which is nearly three orders of magnitude
more economical to calculate) was shown to be an excellent approximation to D

avg
. D

avg
accounts for energy con"nement due to imperfection and damping, whilst D@

avg
only

accounts for energy con"nement due to imperfection. This was illustrated with a detailed
study of a 2 d.o.f. system, in which it was also shown how energy con"nement due to
damping increases with the level of modal overlap. A simple result from linear algebra was
used to show that the imperfection ratio B is the parameter governing energy con"nement
due solely to imperfection. However, energy con"nement due to imperfection and damping
also depends on the coupling ratio o, since o is a factor in determining the level of modal
overlap.

A Monte Carlo study of linear-chain systems showed larger systems to be more
vulnerable to energy con"nement due to imperfections, but this size e!ect is less
pronounced as system size increases. Repeating the calculations for cyclic systems showed
similar size dependence, but more interesting was the observation that cyclic systems are
less susceptible than linear-chain systems to energy con"nement due to imperfections. An
explanation for this was found by comparing the modes of a linear-chain system with those
of its cyclic counterpart. This comparison revealed that the modes of cyclic systems are
more robust in that, for a given level of imperfection, the modes of cyclic systems extend
over a greater number of subsystems.
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